• All
  • Cloud
    • Solutions
    • Virtualization
  • Data
    • Analytics
    • Big Data
    • Customer Data Platform
  • Digital
    • Digital Marketing
    • Social Media Marketing
  • Finance
    • Risk & Compliance
  • Human Resources
    • HR Solutions
    • Talent Management
  • IT Infra
    • App Management Solutions
    • Best Practices
    • Datacenter Solutions
    • Infra Solutions
    • Networking
    • Storage
    • Unified Communication
  • Mobility
  • Sales & Marketing
    • Customer Relationship Management
    • Sales Enablement
  • Security
  • Tech
    • Artificial Intelligence
    • Augmented Reality
    • Blockchain
    • Chatbots
    • Internet of Things
    • Machine Learning
    • Virtual Reality
  • All
  • Cloud
    • Solutions
    • Virtualization
  • Data
    • Analytics
    • Big Data
    • Customer Data Platform
  • Digital
    • Digital Marketing
    • Social Media Marketing
  • Finance
    • Cost Management
    • Risk & Compliance
  • Human Resources
    • HR Solutions
    • Talent Management
  • IT Infra
    • App Management Solutions
    • Best Practices
    • Datacenter Solutions
    • Infra Solutions
    • Networking
    • Storage
    • Unified Communication
  • Mobility
  • Sales & Marketing
    • Customer Relationship Management
    • Sales Enablement
  • Security
  • Tech
    • Artificial Intelligence
    • Augmented Reality
    • Blockchain
    • Chatbots
    • Internet of Things
    • Machine Learning
    • Virtual Reality
The Scientist, the engineer, and the warehouse

The Scientist, the engineer, and the warehouse

Microsoft
Published by: Research Desk Released: Oct 05, 2019

Organizations rely on data science to support innovation, competitive advantage, and efficiency, and the data scientist role is vital to this practice. But to put data science into production at scale, you need skills and methods that go beyond the scope of the data scientist. The role of data engineer has emerged to ensure that predictive models are ready for production.

The technological requirements of data science have also evolved. The cloud data warehouse has developed to address the scalability, availability, and budgetary issues that arise as the volume of data dramatically increases.

Read The Scientist, the Engineer, and the Warehouse white paper to learn what it takes to put cloud analytics into practice.

– Understand the distinct roles of the data scientist vs. data engineer.
– Find out how these roles work together with a cloud data warehouse.
– Learn how Azure SQL Data Warehouse is uniquely suited to address the need for governance, manageability, and elasticity at any scale.
– See how SQL Data Warehouse fits into an effective architecture for cloud analytics.

Welcome Dear

Thank you for your interest and your registration with Teradata. Please confirm your e-mail address to complete your registration by clicking here

Yes, confirm my

By confirming this, you give Teradata your consent to send you information on our data analytics products and services or invitations to events and webinars by e-mail from time to time. You can revoke this consent at any time by clicking on the unsubscribe link at the bottom of each of our e-mails. We assure you that we treat your contact details with the utmost care. Detailed information on how we store and use your personal data or how you can exercise your rights regarding your personal data can be found in the global Teradata Privacy Policy.